
The l imiting sys t em cor responding  to the Boussinesq approximat ion for small  Rossby numbers  is reduced 
to the fo rm (5.2) (see Ref. 6). The sys t em (5.2) may be of in te res t  in connection with the investigation of the 
format ion  of sunspots~ where  magnetic and convect ive effects a r e  coupled. 

The theory of magnetohydrodynamic flow of a heavy fluid at  small  Alfv~n numbers  which has been out- 
lined above is s imi la r  f r om the conceptual  standpoint to the theory  of the flow of a heavy rota t ing fluid at  
smal l  Rossby numbers .  There  is also a g rea t  analogy between the stat ic equi l ibr ium approximat ion (3.6) dis-  
cussed in S e e .  3 and the c lass ica l  quasigeostrophic  approximat ion in meteorology [6]. 
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S Y M M E T R I C  C O L L I S I O N  O F  T W O - L A Y E R  J E T S  

O F  AN I D E A L  I N C O M P R E S S I B L E  L I Q U I D  

S.  A .  K i n e l o v s k i i  a n d  Yu .  A .  T r i s h i n  UDC 532.522 

1. We consider  the prob lem of finding the potential  flow a r i s ing  af ter  the symmet r i c  col l is ion of plane 
two- layer  f r ee  je ts  of an ideal incompress ib le  liquid. Assuming that the flow is s teady state ,  we shall analyze 
the conditions that must  be sat isf ied in this case  by the flows in the different  layers  of the colliding jets .  For  
s implici ty ,  by v i r tue  of the symmet ry ,  we can r ep lace  the plane of s y m m e t r y  with a r ig id  s ta t ionary  wall and 
consider  the s ta t ionary  prob lem of a two- layer  je t  of an ideal incompress ib le  liquid hitting this wall. The flow 
in each of the layers  of the je t  is cha rac te r i zed  by its value of the Bernoull i  integral  constant.  Assuming that 
the p r e s s u r e  at  infinity and on the f r ee  s t reaml ines  ~s ze r% we denote by h the ra t io  of the Bernoull i  integral  
constants  in the l aye r s ;  

T plVl (I.i) 
h ~ 

i 8 '  
P~Vs 

where  v 1 and v2 a re  the liquid veloci t ies  in the layer  at  infinity, and the subscr ipts  1 and 2 a r e  assigned,  
r e spec t ive ly ,  to the externa l  (outside the wall) and internal  l ayers  of the two- layer  jet.  In the general  case  the 
densi t ies  of the l aye r s ,  Pl and P2, and the veloci t ies ,  v i and vz, a r e  different .  In addition, the problem also 
depends on the geometr ic  pa rame te r s  specified at  infinity, such as the thicknesses of the layers  and the angle 
of inclination of the je t  to the wall. Depending on the values of all  these p a r a m e t e r s ,  it is possible in pr inciple  
to have three  var iants  of the flow ar i s ing  when a two- layer  je t  hits the wall; a) T h e f o r w a r d j e t  (the pestle) is 
Inhomogeneous, while the r e t u r n  jet,  (the cumulat ive jet) is homogeneous;  b) the pest le  and the cumulat ive jet  
a r e  homogeneous ; c) the pest le  is homogeneous,  while the cumulat ive je t  is inhomogeneous.  

F igure  1 shows the flow configurat ion cor responding  to condition a), with a homogeneous je t  and an in- 
homogeneous pest le ,  where Pl is the densi ty of the liquid layer  ex te rna l  to the wall, Pz is the densi ty of the 
liquid layer  inside the wall~ and their  veloci t ies  at infinity a r e  vt and v2; 61 and 52 a r e  the thicknesses of the 
l ayers  of the incident j e t  at  the point at infinity, B; 6 t is the thickness of the externa l  layer  of the pest le  a t  the 
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point at  infinity, A ; A  1 is the thickness of the internal layer ,  and A2 is the thickness of the cumulative jet at  
the point C. The angle of inclination of the veloci ty  vector  of the layers  of the incident jet to the wall at  the 
point B is 00 = - 0 r  - a). The regiou of flow of the external layer  is bounded by the free s t reaml ine  L1, on which 
the veloci ty of the liquid is vl, and the separat ion curve  between the layerso T, which is also a s t reamline .  The 
region  of flow of the internal layer  of the incident jet  is bounded by the s t reamline  T, the f ree  s t reamline  L2, 
on which the veloci ty of the liquid is v2, and the absc i ssa  axis ,  on which the angle of inclination of the velocity 
vec tor  is equal to zero  for x > 0 and equal to -~r  for x < 0. 

Let  us consider  the regions corresponding to this flow in different complex-var iab le  planes. The regions 
of flow in the physical  plane z = x + i y  a re  shown in Fig. 1. The regions of flow in the plane of the complex 
potential w = ~p + ir in this case  a re  obvious : F o r  the external  layer  this will be a s tr ip of width ql = 61vl, and 
for the internal layer  it will be a s t r ip  with a sl i t ,  of the same  kind as in the c lass ica l  theory  of cumulation; 
the total width of this s t r ip  will be q2 = (52v2 = A I v 2 + A 2 v 2 .  The regions of flow in the plane of the logari thm of 
the complex velocity 

In du, = l n l V ( z ) l - - i O ( z )  ' 

where V and 0 a re ,  respec t ive ly ,  the modulus of the veloci ty  vec tor  and the angle of the inclination to the x 
axis,  a r e  shown in Fig. 2 for each of the layers .  For  the internal layer  this will be a ha l f - s t r ip  with a d is -  
carded piece bounded by a segment  of the ordinate axis and the curve  T2, corresponding to the curve T sep-  
a ra t ing  the layers .  The region corresponding  to the external layer  of the jet  is bounded by a ver t ica l  l inewhich 
has the coordinate ao = In (vl/v 2) on the absc i ssa  axis and by some curve  TI corresponding to the separat ion 
curve  T. 

Now let us consider  the different values of the ra t io  of the Bernoull i  integral  constants in the layers  of a 
two- layer  jet. If the quantity h defined by (1.1) is equal to unity and v I = v2, then it  is obvious that both layers  
cons is t  of the same  liquid, there  is no discontinuity between the veloci t ies  a t the curveT,  andwe have c lass ical  
problem of a je t  of an ideal incompress ib le  liquid hitting a s ta t ionary  wall (the problem of the symmet r i c  col l i -  
sion of f ree  jets).  If the Bernoull i  integral  constants in the layers  a re  equal (h = 1) but v I ~ v2, then the s t r e a m -  
line T is the curve  of discontinuity of the flow, but it can be shown, as is done in the c lass ica l  theory of cumu-  
lation, that  the flow can be descr ibed by continuous analytic functions. Mathematically this means that the 
solutions for each of the regions  1 and 2 in the complex-potent ial  plane can be analyt ical ly continued through 
the separat ion curve  between these regions  f rom one region into the other (see, e.g., [1]). Geometr ical ly  this 
means that the regions  cor responding  to the flow in each of the layers  in the w plane (see Fig. 2) can be made 
to coincide by an additional shift of one of them along the absc i s sa  axis by an amount  

= in z'l - - t - I n  p~ 
ao ~ -  2 o-: ' 

so that region 1 takes the place of the cut -out  port ion in region 2, curves  T1 and T2 coincide, and the to ta l reg ion  
will be a ha l f - s t r ip ,  as in the c lass ica l  case .  Physica l ly  this means that the flows of the liquid in the two layers  
a re  dynamical ly  s imi la r  and can be obtained f rom each other by a dynamic s imi la r i ty  t ransformat ion.  The 
situation is much m o r e  complicated if the Bernoull i  integral constants in the layers  a r e  not equal, i .e. ,  h ~ 1. 
In this case  the  solution for one region  cannot be analyt ical ly continued into the other, and in the w plane the 
curvi l inear  segments  T~ and ]/2 of the boundaries of regions 1 and 2 will not coincide with each other when 
region 2 is shifted paral le l  to the absc i ssa  axis by an amount a 0 (see Fig. 2). The flow will be descr ibed,  as 
noted in [2], by piecewise analytic functions. To solve the problem,  we must  find the solution for each of the 
regions  1 and 2 in Fig. 1 and sew these solutions together along the s t reaml ine  y. The condition for sewing the 
solutions together is obtained f rom the condition that the p re s su res  a re  equal in regions 1 and 2 on the sepa-  
ra t ion  curve  T; it can be wri t ten in the fo rm 

V ~ 
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where  ~(fl) and V2(fi) a r e  the moduli  of the liquid ve loc i ty  on the separa t ion  cu rve  T in the co r respond ing  
r eg ions ,  which a r e  p a r a m e t r i c a l l y  given by the angle of inclination fl between the c u r v e  7 and the x axis .  In 
t e r m s  of functions of a complex  va r i ab le ,  condition (1.2) means  that  the complex  potent ia ls  of the flows in 
reg ions  1 and 2 in Fig. 1 on the sepa ra t ion  cu rve  T between these  regions  m u s t  sa t i s fy  the condition 

plv~ - -  Pl  ] W = p~v~ - -  P31 d,  arg  ~ = a r g - ~ z .  

To p rove  the ex is tence  of a solution of this p r o b l e m  and cons t ruc t  i t  in genera l  f o r m  is v e r y  difficult ,  s ince  in 
this c a s e  the usual  ma thema t i ca l  appara tus  developed for  solving je t  p rob lems  p roves  inadequate.  However ,  
f r o m  phys ica l  cons idera t ions ,  i t  is logical  to a s s u m e  that  s ince  a s ta t ionary  j e t  flow with a ve loc i ty  d i scon-  
t inuity along the sepa ra t ion  cu rve  between the layer  of the je t  exis ts  for h = 1, then a s t a t iona ry  je t  flow a l so  
exis ts  when the Bernoul l i  in tegra l  constants  in the l aye r s  differ  f r o m  each other ,  a t  l e a s t  by a smal l  m o u n t .  
This a s sumpt ion  was used in [2, 3] to cons t ruc t  the solutions of je t  p rob lems  with a flow discontinui ty a t  the 
boundary of ad jacent  je ts  with r e s p e c t  to pneumonic p r o b l e m s .  As was shown by exper imen ta l  invest igat ions 
of j e t  a m p l i f i e r s ,  the effect  of the liquid in the zone of col l i s ion between the je ts  is smal l  in c o m p a r i s o n  with 
the e f fec t  of the p r e s s u r e  gradient ,  which jus t i f ies  ideal iz ing the flow and rep lac ing  the j e t -mix ing  reg ion  
developing downs t r eam with the ve loc i ty  discontinui ty cu rve  [3]. Extending some  of the r ea son ing  in [3, 4] to 
our ca se ,  we can a s s u m e  that  there  exis ts  a unique solution of this p rob lem for  values  of h in a sma l l  ne ighbor-  
hood of the va lue  h = 1. 

2. We cons ider  the s t a t i ona ry  conf igurat ion for  a two- laye r  je t  hit t ing a wall,  shown in Fig. 1, and a s s u m e  
that  the Bernoul l i  in tegra l  constants  in the l aye r s  a r e  equal,  i .e . ,  h = 1. In this c a se ,  as noted above,  the re  
exis ts  a unique solut ion of the p rob lem.  Let  Vi0(fl ) and V20(fl) be the veloci t ies  of the liquid in each of the l aye r s  
on the sepa ra t ion  cu rve  T, where  ~ - the  angle of inclination of the veloci ty  vec to r s  on ~ to the x axis - is a 
p a r a m e t e r  de te rmin ing  each point of the cu rve  7, wi th-v- -<-f l -<- (~r -  a) .  Since the Bernoul l i  in tegra l  constants  
a r e  equal,  for  the ve loc i t ies  of the l aye r s  a t  the point  a t  infinity and at any point  on the s epa ra t i on  cu rve  T we 
have  

v~ = )~vl, V,0([~ ) = ~Vlo(~), (2.1) 

where  ?~ = 4"P~2. 

A s s u m e  that  the thickness  of the ex te rna l  l ayer  is much l e s s  than the thickness of the in ternal  l aye r  
(61<</f2). Then it is c l ea r  f r o m  phys ica l  cons idera t ions  that  the ve loc i ty  of the liquid along the sepa ra t ion  cu rve  
between the l aye r s  will differ  v e r y  l i t t le  f r o m  v I in the externa l  l ayer  and f r o m  v2 in the in ternal  l aye r :  

vl0([~)  = v , ( t  - ~ ( ~ ) ) ,  v , 0 ( ~ )  = v , ( t  - ~ ( ~ ) ) ,  ( 2 . 2 )  

and it  is eas i ly  shown, taking account  of (2.1), that  this d i f fe rence  v~)  will be the s a m e  for the two l a y e r s .  At 
the ends of the s epa ra t i on  cu rve  y(-Tr) = v(-~r+ a) = 0, and the m a x i m u m  value of v(fl) is at tained a t  some  point 
D on T (see Fig. 1), where  this curve  has its m a x i m u m  c u r v a t u r e  (here the p r e s s u r e  for  a given s t r e a m l i n e  is 
m a x i m u m ,  and the liquid veloci t ies  in the l aye r s  axe  min imum) .  

Le t  us make  the Bernoul l i  in tegral  constants  in the l aye r s  somewhat  unequal; spec i f ica l ly ,  for  e x a m -  
ple ,  le t  us i n c r e a s e  the ve loc i ty  of the ex te rna l  l ayer  a t  the point  a t  infinity by a sma l l  amount  

vl 1 = vi(1 + eo), (2.3) 

where  we can a s s u m e  that e 0 is a sma l l  quantity of the s ame  order  as max v(~). Changing the ve loc i ty  v 1 by a 
sma l l  amount  causes  a sma l l  change in the ent i re  flow. On the changed separa t ion  curve  T between flow regions  
1 and 2 we can  wri te  

v~(~) = v,0@)(l + ~(~)), v~@) = v~0(~)(l + ~(~)). (2.4) 

Since the Bernoul l i  in tegra l  constants  for regions  1 and 2 a r e  now unequal, the connection between the veloci t ies  
of the liqnid along the boundary between them will be de te rmined  not by Eq. (2.1) but by Eq. (1.2), where  we 
m u s t  take account  of the fac t  that  the veloci ty  in reg ion  1 at  infinity is now vii.  Substituting Eqs.  (2.3), (2.4) into 
(1.2) and taking account  of (2.1), (2.2), we obtain 

ei(~) ~, e~(~) + s0. (2.5) 

F r o m  (2.4), (2.5) we can  obtain on the curv i l inea r  segments  "gl and T2 of the boundaries  of regions  1 and 2 in the 
w plane (see Fig. 2) the re la t ions  

In V~ (0) ~ In V2~ (0) .... + ~2 (0), In vt (0) ~ In v~~ (0) +s~(o) - in  ~+e  o. (2.6) 

It can  be s een  f r o m  (2.6) that,  to within sma l l  quanti t ies of higher order  in re la t ion  to e0, reg ion  1 in Fig. 2 will 
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fi t  into the cu t -ou t  por t ion  of reg ion  2 if we shif t  it by an  amount  a 1 = (ln ~-s  along the absc i s s a  axis .  B y  a 
p roces s  s i m i l a r  to the one used in [1], it can be shown that  in this case ,  with the indicated accuracy ,  the solu-  
tion for reg ion  2 in the complex-poten t ia l  plane can be analy t ica l ly  continued to reg ion  1. We a r r i v e  at s i m i l a r  
r e su l t s  if we a r r a nge  the va r i a t ion  of the Bernoul l i  in tegra l  cons tant  in the external  thin l ayer  not by a v a r i -  
a t ion of the ve loc i ty  (2.3) but by a smal l  change in the densi ty  of the liquid. 

Consequently,  if  t h e B e r n o u l l i  in tegra l  constants  in the l aye r s  of the liquid differ  b y a  smal l  amount  and 
if we a s s u m e  that the thickness of the ex te rna l  l ayer  is sma l l ,  to within smal l  quantit ies of higher o rde r ,  the 
solution of the flow of a two- layer  je t  can be found by the c l a s s i ca l  methods developed for  the solution of je t  
p r o b l e m s .  

In conclusion i t  should be noted that  although our d i scuss ion  above dealt  with flow va r i an t  a),  everything 
we have said appl ies  equally well  to flow va r i an t  c) with homogeneous pest le  and inhomogeneous cumulat ive jet .  

3. Now le t  us give m o r e  detailed cons idera t ion  to flow va r i an t  b), i .e . ,  the flow condition with homogen-  
eous pes t le  and homogeneous cumula t ive  jet .  To do this,  we shal l  f i r s t  wr i te  out the conditions that mus t  be 
sat isf ied by the p a r a m e t e r s  of our p r o b l e m  in order  to r e a l i z e  a pa r t i cu la r  flow r e g i m e .  We consider  flow 
va r i an t  a) shown in Fig. 1. F r o m  the conditions of conse rva t ion  of the mass  and momen tum flows, we obtain 
an express ion  for  the thickness of the in ternal  l ayer  of the pes t le ;  

Ax = 1 + cos X~v] t - cos (3.1) 

F r o m  this ,  se t t ing  A 1 > 0, we obtain the condition for  the r ea l i za t ion  of a flow r e g i m e  with a homogeneous cumu-  
la t ive  jet ,  which we wr i te  in the f o r m  

~2v ~ 8 i 1 cos~ 8,. (3.2) 
' > --'~ l ~ c o s ~  

In a s i m i l a r  manner  we can obtain the condition for the r ea l i za t ion  of a flow r e g i m e  with a homogeneous pes t le  
and an inhomogeneous cumulat ive  jet .  This condition will  have the f o r m  (3.2), in which the inequality sign is 
r e v e r s e d .  Thus, for  a two- layer  j e t  hi t t ing a wall ,  the condition for  the rea l i za t ion  of flow with a homogeneous 
pes t le  and a cumula t ive  jet ,  i .e . ,  the r ea l i za t ion  of flow va r i an t  b), is the express ion  (3.2) with an equali ty sign. 
At leas t ,  by v i r tue  of its exis tence  condit ions,  this flow r e g i m e  is an in te rmedia te  one, cover ing  the t rans i t ion  
between va r i an t s  a) and c). F r o m  this it  f o rma l ly  follows that  if we succes s ive ly  v a r y  the values of the p a r a m -  
e te r s  de te rmin ing  the p r o b l e m  in such a way that, for example ,  the inequali ty (3.2) gradual ly  d e c r e a s e s ,  be-  
comes  an equality,  and then becomes  an inequali ty in the opposi te  direct ion,  we mus t  obtain a s e t  of flows whose 
configurat ion gradual ly  p a s s e s  f r o m  flow v a r i a n t  a) through v a r i a n t  b), to va r i an t  c). In actual i ty,  if we r e m a i n  
within the confines of the adopted scheme  with two flow reg ions ,  i t  is imposs ib le  to r e a l i z e  such a t ransi t ion.  
As the inequali ty (3.2) approaches  an equality,  the sepa ra t ion  curve  T comes  c lose r  to the branching s t r eaml ine  
R (see Fig. 1), on which we find the point O of comple te  s tagnat ion of the flow in reg ion  2. 

We shal l  a s s u m e  for the sake  of def ini teness  that the Bernoul l i  in tegra l  constant  in the externa l  l ayer  of 
the incident je t  is g r e a t e r  than the cons tant  in the internal  l aye r ,  i .e . ,  h> 1, and f r o m  (1.2) we can express  t h e  
instantaneous ve loc i ty  VI~) of the liquid in r e g i o n l  on the s t r e a m l i n e  T in t e r m s  of ve loc i ty  V2~8) in reg ion  2: 

t � 9  ~ "h (3 .3 )  v~C~) = ~ v v ~ t  - l )  + v'. (~). 

F r o m  this it  follows that  the ve loc i ty  of the liquid in reg ion  1 on the s t r eaml ine  T cannot be less  than a c o m -  
ple te ly  defined value,  and speci f ica l ly ,  eve rywhe re  on the sepa ra t ion  cu rve  

V~ 
V x (f3) >~--~Vh - -  i .  (3.4) 

On the other hand, when the s ign in (3.2) is an equali ty sign, the sepa ra t ion  cu rve  T mus t  m e r g e  with the s t r e a m -  
line R,  as  shown in Fig.  3a, and the liquid in reg ion  1 at  the point O of this s t r eaml ine  is slowed down to ze ro  
veloci ty ,  which, accord ing  to (3.4), is poss ib le  only when h = 1, or, to s ta te  the s a m e  condition another  way, when 
XZv 2 = v~. Thus,  the flow r e g i m e  shown in Fig. 3a can  be rea l i zed  only in the unique case  when the Bernoul l i  
in tegra l  constants  in the l aye r s  a r e  equal, i .e . ,  when the flows in regions  1 and 2 a r e  dynamica l ly  s im i l a r  to 
each other.  Moreove r ,  if we use  a line of r ea son ing  qual i ta t ively  analogous to the one used by M. A. L a v r e n t ' e v  
[1], we can show that  for a flow s chem e  with bounded der iva t ives  of the ve loc i ty  for h ~ 1 it  is imposs ib le  to have 
a flow configurat ion in which the sepa ra t ion  cu rve  T approaches  the branching s t r e a m l i n e  R suff icient ly c lose ly  
(see Fig. 1). 
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Let us consider  the flow configuration in Fig. 1 and assume that h < l .  Then we find that the veloci ty of 
the liquid in region 2 on the curve 7 sat isf ies the inequality 

V~(p) ~ v2yi--~-- h. (3.5) 
At  the same  time, by a proper  choice of the pa ramete r s  of the problem we can make sure  that the thickness A 1 
of the internal  layer  of the pest le  is a rb i t r a r i ly  smal l .  In this case  the separat ion curve  T approaches the 
branching s t reaml ine  R ve ry  c lose ly  but does not coincide with it. But on the s t reaml ine  R, in a neighborhood 
of the point O 1 the veloci ty  of the liquid in region 2 is ve ry  low1 and it is equal to ze ro  at  the point O itself, 
while on the s t reaml ine  7 the velocity of the liquid is bounded below by condition (3.5), and the condition that 
the derivatives of the veloci ty  mus t  be bounded is not satisfied 

The question of what flow scheme is rea l ized  when the separa t ion  curve between the d iss imi lar  layers  of 
a two- layer  je t  for h ~ 1 comes sufficiently c lose  to the branching s t reaml ine  is one which is of in teres t  in its 
own r igh t  and cannot be answered in advance. It is not impossible that in this case  an instability in the flow will 
develop, and it will be of a nonstat ionary periodic charac te r .  If we at tempt to s tay within the confines of s teady-  
state flows1 then, as a hypothesis,  we can propose  a flow configuration with a stagnation zone, which is not in- 
consis+ent f rom the hydrodynamic point of view. In Fig. 3b we show such a flow configuration for the case in 
which the pa ramete r s  of the problem sat isfy  Eq. (3.2) with an equality sign, i.e., when the separat ion curve 
between the layers  coincides with the branching s t reaml ine  R and we have a flow var iant  w i t h a  homogeneous 
pest le  and a cumulative jet. At some point M, the s t reamline  separa t ing the layers  will branch into two s t r e am-  
lines ME and MF, which I together with a segment  EF of the wall1 bound region 3 of the liquid at r es t .  On the 
segment  B M o f  the s t reaml ine  ~ the velocit ies in regions 1 and 2 a re  connected with each other by the relat ion 
(3.3), while on segments  ME and MF of the divided s t reaml ine  the velocit ies a re  constant  and a re  equal to their 
respec t ive  values at  the point M. This configuration ensures  continuous p re s su re  over the entire flow region.  
The c lass ica l  problem of the coll ision of f ree  jets of an ideal incompress ible  liquid, with the formation of a 
stagnation zone (which was considered some time ago by Chisotti)l is, as is general ly  known, insufficiently 
defined. Depending on the value of the p re s su re  P0 given in the stagnation zone, it may extend to infinity ( i f  
P0 = 0), have finite dimensions (if 0 < P0 ~P.) ,  or, cont rac t  into a point (if P0 is equal to the p r e s s u r e  of total s tag-  
nation p . ) .  In the case under considerat ion here ,  the dimensions of the stagnation zone cannot be less than the 
values so determined,  since the p re s su re  in it must  be s t r ic t ly  less than the p r e s s u r e  of total stagnation for the 
layer  with a lower value of the Bernoulli  integral constant.  Never theless ,  it is impossible to say  in advance 
whether this problem will be sufficiently defined to have a unique solution.  In an analogous mannerj  we can 
a lso  propose a flow configuration with a stagnation zone for the case  when the separat ion curve between the 
layers  comes sufficiently c lose to the branching s t reamline .  For  flow var iant  a), when the inequality (3.2) is 
close to an equality, such a flow configuration is shown in Fig. 3c. The advantage of this configuration over the 
one shown in Fig. 1 is that it always ensures that we sat isfy  the boundedness condition for the derivatives of the 
veloci ty in the ent ire  region of moving liquid. 

Summing up all of the foregoing, we can say that the existence of s tat ionary configurations in all three of 
the flow variants  introduced at the beginning of this study for the symmet r i c  coll ision of plane two--layer jets of 
an ideal incompress ib le  liquid, when the Bernoulli  integral  constants in the layers  a re  not equal to each other,  
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is not cont rad ic tory ,  and there  a r e  a number  of f ac to r s  in suppor t  of this a s s e r t i o n  (in addition to the quali tat ive 
a rguments  given in this study, these fac tors  a l so  include known exper imenta l  r e su l t s ) .  

4. The authors  of [4] invest igated expe r imen ta l ly  the behavior  of d i s s i m i l a r  meta ls  at  the in ter face  
between them when the re  is an oblique col l i s ion between bimetal l ic  p la tes .  A s y m m e t r i c  s cheme  for the col l i -  
sion of b imeta l l ic  plates  was achieved through s y m m e t r i c  throwing of the pla tes  by explosive  charges .  The 
exis tence  and d i rec t ion  of a tangential  discontinui ty in the ve loc i ty  at  the in ter face  between the d i s s i m i l a r  meta ls  
was fixed by means  of control  wi res  p r e s s ed  into the b imeta l l ic  plates along the normal  to the in ter face .  

In their  discussion~ the authors  of [4] a r r i ved  at some  e r roneous  conclus ions ,  mos t  of which were  based 
on the thesis  that a s t a t ionary  flow configurat ion cannot exis t  when mul t i l ayer  je ts  coll ide,  and the re fo re  they 
were  unable to give a suff icient ly s imple  and c l ea r  explanation of the fact  that  the control  wi re  broke.  An 
ana lys i s  of these r e s u l t s  on the bas is  of all  the fac to r s  we have mentioned showed that the exper imenta l  r e su l t s  
of [4] can be comple te ly  explained by means  of the idea l - incompress ib le - l iqu id  model .  

The je t  model  of the col l is ion of b imeta l l ic  p la tes  invest igated in [4] is cha rac t e r i zed  by di f ferent  values 
of the liquid densi ty in the l aye r s  and equal va lues  of thei r  ve loci ty  at  infinity. The r e l a t ion  (3.3), which gives 
the connect ion between the veloci t ies  of the liquid in the l aye r s  along the s t r e a m l i n e  T sepa ra t ing  themt will in 
this c a s e  take the f o r m  

i vl  (p) V - + (4.1) 

where  v 0 is the common veloc i ty  of the l aye r s  at  infinity. This r e l a t ion  was stated in [4], but the authors  did 
not pay enough at tention to it. It follows f r o m  (4.1) that the heav ie r  liquid a t  the in te r face  will always (except  
a t  the point a t  infinity) have a higher velocity,  which explains the exper imen ta l  r e su l t s  obtained. It  should be 
borne  in mind that  these r e su l t s  were  obtained for a flow r e g i m e  with an inhomogeneous pes t le  and a homo-  
geneous cumula t ive  jet ,  which is shown in Fig. 1. 

In the f i r s t  s e r i e s  of exper iments  descr ibed  in [4], the external  l ayer  (copper) was heav ie r  than the in te r -  
nal l ayer  (aluminum).  According  to the foregoing d iscuss ion ,  on the separa t ion  curve  between the l aye r s ,  at  
any point  on i t  we have Vl(fi) > V2(fi), and consequent ly  when col l i s ion occurs ,  the p a r t  of the control  wi re  in the 
copper  m u s t  move forward f a r the r  than the p a r t  of the wire in the a luminum.  This fact  was r eco rded  in the 
exper imen t s  (Fig. 3 of [4]) and is qual i ta t ively i l lus t ra ted  in Fig. 4a, where  the number  I indicates the posit ion 
of the wire  in the l ayers  a f te r  col l is ion of the b imeta l l ic  plates in the f i r s t  s e r i e s  of exper iments .  

A qual i ta t ively analogous r e s u l t  should be obtained in the third and fourth s e r i e s  of exper iments  of [4], 
where  the ex te rna l  l ayer  is Dura lumin  and the in ternal  l ayer  is a luminum. The conclusion of the authors  of [4] 
that  in this case  there  should be no d i sp lacemen t  of the l aye r s  r e l a t i ve  to each other ,  because  the densi t ies  of 
the l aye r s  a r e  p rac t i ca l l y  equal,  is incor rec t .  The fact  is that the magnitude of the d i sp lacement  of the l ayers  
is an in tegral  c h a r a c t e r i s t i c  which depends not only on the d i f ference  between the layer  densi t ies  but also on a 
number  of other f ac to r s .  Using the example  of the pair  of meta l s  mentioned,  we can examine quali tat ively the 
causes  that  can br ing  about a noticeable d i sp lacement  of the l aye r s  even when they have a lmos t  equal densi t ies .  
In [4] the densi ty  of the Dura lumin  used is not indicated, but its app rox ima te  value is known. For  example ,  for 
A12024 alloy the tabulated value of the densi ty is Pi = 2.785 g /cm 3, and for A1921T alloy Pl = 2.833 g/cm 3. The 
densi t ies  of some  other a luminum alloys a l so  lie in this range .  For  c la r i ty ,  we shall  work  with the densi t ies  of 
the two alloys mentioned above.  For  the densi ty  of the internal  l ayer  (aluminum) we use the value P2 = 2.71 
g /cm 3. Then the value of the p a r a m e t e r  k in our p rob l em will be ~ = 1.013, e.g. ,  the external  l ayer  has the den- 
s i ty  of A12024 al loy and ~ = 1.022 for the densi ty  of the second alloy. As can be seen,  the densi t ies  of the l aye r s  
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on a re la t ive  scale  do in fact  differ by a smal l  amount:  The p a r a m e t e r  X differs f rom unity by about 1.5-2%~ 
The connection between the velocit ies of the layers  along the separa t ion curve  in the let  model is given by 
re la t ion  (4.1) ; this re la t ion  is shown graphical ly  in Fig. 5. Here  the velocit ies a r e  r e f e r r e d  to their values at  
infinity, curves  1 and 2 re la te ,  respec t ive ly ,  to the smal le r  and la rger  values of h, and the dashed s t ra ight  line 
is the line of equal veloci t ies .  Any curve constructed on the basis of (4.1) is the d iagram of the possible values 
of the veloci t ies  in each of the layers  along the separa t ion curve  T. Indeed, moving along the separat ion c u r v e t  
f rom the point at  infinity B (see Fig. 1), in Fig. 5 we will go down f rom the point (1, 1) along the c u r v e  of poss i -  
ble s tates .  The descent  will continue until we reach  the point D on ~, at  which this s t reaml ine  has maximum 
curvature .  As we move fur ther  along ~/to the point at  infinity A on the VI(V 2) curve,  we shall a s cend f romthe  
point of minimum veloci ty values in the opposite direction.  On the VI(V2) curve the veloci ty minimum point will 
be lower as the point D cor responding  to it on T is c loser  to the stagnation point O (see Fig. 1). On the other 
hand, the jump in veloci t ies  f rom one layer  to the other at  this point will be maximum on ~, which is obvious 
f rom Fig. 5. Consequently the f i r s t  factor  that can cause  a substantial  difference between the velocities of the 
layers  {and a noticeable displacement  of the layers)  for a smal l  difference between their densities is the 
geometry  of the flow. For  example, for a re la t ive  veloci ty of 0.2 in the internal layer ,  the veloci ty in the exter-  
nal layer  at this point of the curve ,  in the case  of the Duralumin-a luminum pair considered here ,  will be 50% 
higher.  If the pa rame te r s  of the coll is ion a re  such that the separat ion curve comes sufficiently close to the 
point of complete stagnation of the liquid, then the difference between the veloci~es of the layers  may be suffi- 
ciently large  to bring about a noticeable displacement  of the layers .  Another factor  is the length of t ime the 
veloci ty difference acts .  If the difference between the velocit ies of the layers  remains  re la t ive ly  smal l  every-  
where on ~ but exists for a sufficiently long time, then the final displacement  of the layers  may be substantial .  
In the case  of an ideal liquid the difference between the velocit ies on T in our case  exists everywhere  except at  
the point at infinity, and consequently it exists for an infinitely long time, but an ideal liquid is only a model of 
a r ea l  p rocess .  For  metals this model is valid at  sufficiently high p r e s su re s ,  when the s t ruc tu ra l - s t r eng th  
forces  can be d is regarded.  The region in which high p re s su res  a re  attained when there is a coll is ion between 
the plates is of limited length, and it is the dimension of this region that determines  in our case  the r ea l  t ime 
of action of the veloci ty difference at the interface between the layers .  As a pract ical  mat te r ,  this time depends 
on the geometr ic  and dynamic pa ramete r s  of the coll is ion and on the s t ruc tu ra l - s t r eng th  proper t ies  of the plate 
mate r ia l s .  Thus, the mere  fact  that the difference between the layer  densities in a bimetall ic plate is small  
does not mean that there  will in fact  be no displacement  of the layers  or that the displacement  will be ve ry  
small .  The experiments  in [4] confirmed these conclusions.  The direct ion of the displacement  of the control  
wire  in the specimens of the third and fourth ser ies  of experiments  (see Fig. 5 of [4]) is analogous to that in the 
f i r s t  se r ies  (see Fig. 4a) and indicates that the heavier  layer  has a higher velocity. 

Now let us consider  the resul ts  of the second ser ies  of experiments  in [4]. The resul ts  of this ser ies  
include a fact  which was not explained in [4]. Specifically, while in the other ser ies  of experiments the control  
wire  on the boundary between the layers  broke and the two parts  of the wire which were  in the different layers  
moved some distance apart ,  in this ser ies  there  was no break of the wire in the specimens.  The position of the 
control  wire  in the specimen for one of the experiments  of this se r ies  in [4] was shown on a photograph (see 
Fig. 4 of [4]) and is qualitatively i l lustrated in Fig. 4b of our study, where the number II indicates the control  
wire.  Accord ing  to all of the foregoing discussion,  the par t  of the wire in the heavier  internal layer  should 
pass the wire in the external l ayer ,  and the configurat ion of the control  wire  in the spec imen should be quali-  
tat ively the same  as the one indicated by the number II' in Fig. 4b. However, there  is no significant d i sagree -  
ment  between our reasoning and the resu l t s  of these experiments .  Let us consider  some facts which re la te  to 
this problem. In the f i r s t  place, this se r ies  of experiments  differs f rom the f i r s t  ser ies  in having the positions 
of the external and internal layers  of the bimetall ic plates interchanged, while the thicknesses of the layers  
remained unchanged. However, this exchange substant ial ly a l ters  the geometr ic  cha rac te r i s t i c s  of the flow. 
Using the data of the table in [4], which gives the values found for the main pa rame te r s  determining the coll i-  
s ion of the plates,  and using formula (3.1), taking account  of the fact  that v 1 = v2, we can calculate  the thickness 
of the internal layer  of the pest le  (see Fig. 1) for the f i r s t  and second ser ies  of exper iments .  It turns out that 
in the f i r s t  se r i es ,  where the internal layer  is aluminum, A1 = 1.23 ram, and in the second se r i e s ,  where the 
internal layer  is copper ,  A t = 1.85 mm, i.e., in the f i r s t  case  the curve of separat ion between the layers  was 
substantial ly c loser  to the point of total stagnation of the liquid (in compar i son  with the initial thickness of the 
internal  layer ,  62 = 2 mm). This means ,  as was shown above, that the discontinuity in the velocit ies along the 
separa t ion curve  between the l ayers ,  which makes the internal layer  lag behind in the f i r s t  s e r i e s ,  is con- 
s iderably  grea te r  than the veloci ty jump on ~, which must  have made the external  layer  lag behind in the 
second se r ies .  Another important  factor  a r i s ing  out of the rea l  proper t ies  of the mater ia ls  is the effect of v i s -  
cosi ty.  Let us consider  some point on the separa t ion curve  between the layers  and, in a direct ion normal  to the  
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sepa ra t ion  curve~ cons t ruc t  d i ag rams  of the liquid veloci t ies  in the two l aye r s .  If this point is not v e r y  c lose  
to the point  of total  s tagnat ion of the flow and the neighborhood cons idered  is not too l a rge ,  we may  a s s u m e  as 
an approximat ion  that  on a s egm en t  perpendicular  to the s t r e a m l i n e  T a l l  the liquid ve loc i ty  vec to r s  a r e  p e r -  
pendicular  to this segment .  For  the case  in which the externa l  l ayer  is denser  (the f i r s t  s e r i e s  of experiments) ,  
the veloci ty  d i a g r a m  a t  an a r b i t r a r y  point  of the sepa ra t ion  cu rve  between the l ayers  is shown qual i ta t ively in 
Fig. 4a, and for the ca se  in which the in ternal  l ayer  is heav ie r  (second se r i es )  it is shown in Fig. 4b~ An 
analysis  of Fig. 4 shows that  the p r e s e n c e  of the r e a l  v i scos i ty  of the m a t e r i a l s ,  manifes ted  in f r ic t ion between 
adjacent  e l e m e n t a r y  l ayers  ( s t reaml ines )  in each layer  of an inhomogeneous jet ,  will af fect  the flow dif ferent ly  
in the two cases  under considera t ion .  In the f i r s t  c a se  (see Fig. 4a) the d i a g r a m  of veloci t ies  is such that  the 
v i scos i ty  will cause  a d i sp lacemen t  of the l aye r s  r e l a t i ve  to each other ,  and converse ly ,  in the second case  (see 
Fig. 4b) the r e a l  v i scos i ty  will p r even t  any d i sp lacemen t  of the d i s s imi l a r  l ayers  with r e s p e c t  to each other.  
These two facts a r e  enough to explain why in the f i r s t  s e r i e s  of exper imen t s  in [4] the re  was a b r eak  in the con-  
t ro l  wires  of the spec imens ,  while in the second s e r i e s ,  in which the posi t ions of the meta ls  were  interchanged,  
the re  was no break .  It is beyond doubt that for the ca se  in which the in ternal  layer  is heav ie r  than the externa l  
l aye r ,  we can s e l e c t s u c h  m a t e r i a l s  for  the l aye r s  of the b imeta l l ic  p la tes  and obtain such col l is ion p a r a m e t e r s  
that  the internal  l ayer  will never the less  move  "ahead" of the ex te rna l  l ayer  and the configurat ion of the control  
w i r e  in the spec imen  will be  qual i ta t ively c lose  to the conf igurat ion indicated in Fig.  4b by II in the external  
l aye r  and II '  in the in ternal  l aye r .  

It should be emphas ized  that  the phenomenon of a discontinui ty in ve loci t ies  on the in te r face  between the 
d i s s i m i l a r  meta l s  is de te rmined  by the actual  s t r u c t u r e  of the flow cor respond ing  to the invest igated col l is ion 
of the p la tes ,  not to the s t ruc tu ra l  s t rength  and v i s c o s i t y  of the me ta l s ,  as is a s s e r t e d  in [4]. The r e a l  p r o p e r -  
t ies of the m a t e r i a l s  mus t  be taken into cons idera t ion  only in order  to gain an understanding of the fact  that  such 
c h a r a c t e r i s t i c s  of the ma te r i a l s  as s t rength  or v i s cos i t y  may  intensify or weaken the r e s u l t  produced by this 
phenomenon, which in this ca se  is expressed  in a d i sp l acemen t  of the l aye r s  with r e s p e c t  to each other and a 
b r eak  in the control  wire .  

Thus, all  the exper imen ta l  r e s u l t s  of [4] a r e  comple te ly  r econc i l ab le  with the s t a t ionary  model  cons idered  
in the p r e s e n t  s tudy for  the col l i s ion of two- layer  jets  of an ideal i ncompres s ib l e  liquid with d i f ferent  values  of 
the Bernoul l i  in tegra l  cons tant  in the di f ferent  l aye r s  of the je t ,  and the re fo re  the r e su l t s  of [4] qual i ta t ively 
conf i rm the val id i ty  of our model .  
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